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1 Abstract
In searching for a harbinger ofmarketmovements, the author presents a technique tomonitor the tempo-
ral patterns that lead to anticipated price changes. Capturing the dominant frequencies in the resulting
convolution kernel functions creates a metric to reveal insights about a market as it evolves over time.
Serendipitously, a few key discoveries point towards apparent predictive utility when applied to foreign
exchanges: namely, multi-scale periodicity and precursor indications of actual market movements. This
technique, which was inspired from the field of biomedical signal processing, opens an avenue for novel
analysis of the trader/trend-response dynamics in a market.
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3 Introduction

“Ego cogito, ergo sum,” famously wrote Descartes in his Meditations, asserting that if there is any-

thing ofwhich he can be certain, it is the existence of his ownmind. Hence the foundation of solipsism—

how can we know that a mind-independent external world even exists? Our senses have betrayed us

countless times before. Whereas the truth on this particular matter of existence is unknowable, certain

other things are knowable (and indeed known) to be mere human constructs, like the global economy.

The financial world is an interconnected structure composed of just one building block, the human. So-

ciety’s collectivewhims that shape the direction of the economy are essentially a grand-scalemanifestation
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of human psychology; thus, the guaranteed existence of human bias necessitates that market efficiency is

an untenable idealism to which reality strives to converge.

Starting in the early 1990s there was an explosion in the field of behavioral finance, wherein empiri-

cists worked with theoreticians to catalogue the different ways to take advantage of market inefficiencies

for the sake of short-term profit. In the big picture, it is generally well-known that overall investor op-

timism tends to lead to lower market returns [1]. This makes intuitive sense. In 1999, Hong et al. [2]

(with an updated theory in [3]) proposed a theoretical framework by which informational asymmetry

would allow different groups of trading agents to profit from momentum trading. Since then, Verardo

[4] and others have offered substantial empirical support for this link between price drift and belief het-

erogeneity, the latter of which is partly due to suboptimal access to information. Authors of the likes of

Miravete [5] have also laid out rigorous methods for interpreting the effects of information asymmetry.

Verardo [4] estimates trader beliefs through the dispersion of analyst forecasts of earnings. More recently,

the ease of obtaining comprehensive personal records from social media websites has allowed researchers

like Liu [6] to more cleanly infer actual trader sentimet by computing an individualized emotional index

for someone’s feelings as expressed online. Liu found a correlation between this index and each trader’s

daily performance. Twitter is also a widely used social-media platform wherein some individuals exert

high levels of influence—there is now significant evidence towards the role of these influencers in shap-

ing speculative performance [7]. The work in this paper complements the aforementioned studies in

behavioral economics by opening an avenue for developing a new kind of active-trader-sentiment index:

one that is derived solely through features intrinsic to the financial time series of the market. Since there

is currently no acceptedmodel that relates short-term sentiment tomarket dynamics, it is not yet possible

to justify the following conclusions with formal rigor.

The fractal-market hypothesis suggests that the stability of a market hinges on the condition that the

strategies of involved traders operate on diverse time horizons, in order to ensure sufficient liquidity [8].

Starting with the work of Mandelbrot, many studies point towards the existence of time-scale invariant

patterns in financial time series. In otherwords, they seem to exhibit somedegree of self-similarity. Would

it follow from the assumption of self-similarity, then, that observing high-frequency oscillations in the
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market could provide insight about future trends? After all, practitioners of science in a wide variety of

fields have found great success in revealing the underlying “collective periodic oscillations of interacting

elements” within complex systems by using resonances to uncover structure [9]. To infer the behavioral

pattern of each agent would be to predict the future of the economy.

The circadian (i.e. daily) periodicity of volatility in markets such as foreign currency exchanges is

extremely well-documented in financial literature [10, 11, 12, 13], a phenomenon that by itself can inform

viable trading strategies. Foreign exchange volatility, however, now exhibits some interesting spectral

dynamics as well [14] thatmost likely have to dowith the emotional predispositions andmodus operandi

of the traders.

Many researchers in physiology, when facedwith the challenge ofmodeling the vascular system [15] or

certain neural systems [16], tend to place their trust in convolutional models with “kernels” represented

by Laguerre expansions. These models are philosophically appropriate because the basis functions are

inspired by the input-output relationship between natural processes as they respond to phenomena and

return to equilibrium. A great advantage over more black-box methods such as large artificial neural

networks is that the resulting coefficients for the set of Laguerre functions are easily interpretable and,

in fact, have been utilized to diagnose diseases; for instance, the effect of Alzheimer’s on feedback loops

in the cerebral hemodynamics has been quantified to the extent that it can be used to facilitate diagnosis

[15].

This paper outlines a model in the scope of capturing the short-term “trend-response” characteristics

of the active traders through Laguerre expansions of their regression kernels. Through the derivation

of scalar metrics that correspond to certain key features of interest, the small-scale effects that are encap-

sulated by each kernel are employed to map out a bigger picture of the market trends. The Discussion

section lists novel discoveries encountered along the way.
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4 Methods

Global economic markets can be viewed as an accumulation of time-delayed reactions to past events,

which inform the financial community’s sentiment about future performance. Therefore there must be

certain dynamics that govern the time frame overwhich themarket reacts to changes. As trader sentiment

evolves alongwith the economy, thesemarket dynamics are non-stationary aswell. If there is ametric that

could be used to instantaneously track the prevailing sentiment that is most relevant to a certain market,

it could potentially be useful as a forecasting tool.

0 20 40 60 80 100

−0.2

0.0

0.2

0.4
L1

L2

L3

0 20 40 60 80 100

−0.2

0.0

0.2

0.4
L4

L5

Figure 1: The first five basis functions. The system memory in this illustration is 100 units.
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4.1 System Identification With Kernels

The relationship between multiple signals can be viewed as a functional operator (or a “system” that

can be described by a predictive input-output model) where some of the signals are treated as inputs

and the others as outputs. In the interconnected global economy, most market indices serve as both

inputs and outputs to each other; however, the future is always a function of the past. This perspective

leads to autoregressive modeling, where the past is taken as an input in order to predict the future. To

model the time-delayed accumulation of effects, one could choose to convolve a linear-response function

over the recent past of a market time series in order to generate a prediction of the near future. In the

linear context, this can be achieved with a one-dimensional function, but a nonlinear context (i.e. system

operator) requires multi-dimensional functions. Many studies have examined this problem, and efficient

methods currently exist to estimate these functions from data [17]. Generally, the linear context is more

amenable in practice.

One of the most widely used classes of simple predictive models is the representation of the future as

a weighted moving average of the past. Traditionally denoted as AR(p), the model estimates the signal

xt of a process by taking into account the p previous discrete-time samples:

xt+1 =

p−1∑
τ=0

cτxt−τ + et+1, (1)

where the coefficients c0, . . . , cp−1 are the estimated parameters for the model and the residual term et

is assumed to be white noise. The coefficients could be plotted in sequence to produce a view of the

linear-response function (the “kernel”), which provides insight about the temporal dynamics of the pro-

cess. Dividing p by the sampling rate of xt effectively yields the assumed process memory; hence, it is

clear that depending on the application, circumstances could lead to an undesirably large amount of free

parameters. Such anAR(p)model with a high pwould be unwieldy because overfitting adds noise to the

resulting coefficients, rendering the kernel difficult to interpret.

To decouple the number of free parameters from the internal properties of the underlying process,

one could estimate the kernel as a weighted sum of a small set of k basis functions. The accuracy of this
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approximation then lies on the appropriateness of the basis functions, in terms of their resemblance to

the most typical scenarios in which events generate time-delayed ripple effects. For this, there has been

a great amount of success resulting from the use of Laguerre polynomials multiplied by a diminishing

exponential, since they capture the oscillatorymechanics that are often observed in complex systems, and

they also place greater value on the more recent data. The applicability of Laguerre functions implies

that only a small amount is needed to reach adequate modeling power—this is beneficial because the

drastic reduction of free parameters makes the technique resilient to noise. This study will use the five

basis functions shown in Figure 1. Empirically, it has been found that this number of Laguerre functions

enables the model to capture up to three resonances [17].

It is clear that the resulting kernel should highlight any diminishing oscillatory effects that result from

changes in the market. A basic autoregressive model that directly extends Equation 1 would have the

kernel predict the immediate future as a function of the past in a discrete time series:

xt+1 =
M∑
τ=0

xt−τ ·

(
k∑

i=1

ciLi(τ)

)
+ et+1. (2)

Here the basis-function coefficients are c ∈ Rk, the memory of the kernel is M , the evenly-sampled

time series of interest is x ∈ RN , the diminishing Laguerre functions are Li : {0, . . . ,M} → R for

i ∈ (1, . . . , k), and the residual term is e ∈ RN . The Laguerre functions have one free parameter that

determines their time scale, conventionally termed α, the value of which is empirically maximized while

still satisfying the following criterion for a selected systemmemoryM : ∀i
[
Li(M) ≈ 0

∧
L̇i(M) ≈ 0

]
.

In other words, the kernel must diminish to zero towards the end of the chosen epoch. The model de-

scribed so far is inadequate because its purely autoregressive kernel
(∑k

i=0 ciLi(τ)
)
would approach the

identity impulse function (i.e. the Kronecker delta) that gives 1 at τ = 0 and zeros everywhere else. Due

to causality, the present correlates more to the immediate past than to the distant past.

Perhaps the kernels could project into the relatively distant future, with hopes that they will be able

to capture more valuable information on the temporal dynamics of the market. One way to achieve this

would be to attempt a prediction of the slope of a simple linear regression from the present to some point
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in the future. The regression slope can be viewed as a separate variable, so the model is no longer strictly

autoregressive:

βt→t′ =
M∑
τ=0

xt−τ ·

(
n∑

i=1

ciLi(τ)

)
+ et, (3)

given that linear regression produces coefficients α and β that best fit the equation xτ = αt→t′ +

βt→t′(τ− t) in some time interval τ ∈ [t, t′], with t′− t = ∆t termed the outlook of themodel and held

constant. To ensure kernel effectiveness, the signal being convolved upon needs to have near-zero mean.

For that reason, xt is the difference between themarket time series and a large-window non-centered and

backwards-looking moving average from each past data point. The least-squares-fit kernel, which mini-

mizes
(∑N

t=1 e
2
M+t

)
, can be found by efficiently solving a system of linear equations guaranteed to have

a single unique solution.

Note that these kernels inform us on the dynamics of the system, which are different from those of

the isolated signals. The two signals under analysis are future slope and past performance, which both

come from the same time-series data but do not necessarily have the same characteristics. The quanti-

fied relationship between the two may also have distinct characteristics from those resulting due to pure

autoregression on either signal.

4.2 Historical Data

This study utilized minute-by-minute weekday quotes of bid prices for different currency pairs, begin-

ning in December 2011 and continuing until February 2017 (totaling 63 months). The data was obtained

from GAIN Capital’s public archives in weekly partitions and the pairs under scrutiny are EUR/USD,

GBP/USD, and CHF/USD. Certain pairs had to be derived from existing ones; for instance, CHF/USD

was calculated through EUR/USD
EUR/CHF . Each time serieswas then slightly smoothed (to avoid aliasing issueswith

noise—a moving average with a 10-minute window was applied) and subsampled at 10-minute intervals,

to decrease computational costs.
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Figure 2: All of the 12-hour trend-response kernels generated from EUR/USD (zoomed in to the first
eight hours).

5 Results

For each week in the data set, kernels were generated using the above method with five basis functions, a

systemmemoryof 12hours, a future outlookof 12hours, and amoving averageof 24hours. Figure 2 shows

the resulting kernels from eachweek of EUR/USD: it ismore common to see a kernel have a negative first

value because a quick rise is likely to be met with a corresponding drop in the index. Also note that there

seem to be some significantly commonwaveforms, with switching phases. A highly bullish time segment

in the market should produce a mostly positive kernel, but the correspondence between large trends and

trend-response kernels is not so cut and dry due to the distinction between system characteristics and the

characteristics of individual signals.
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5.1 Spectral Analysis

To plot the entire kernels as they evolve over time would not facilitate effective interpretation. Instead,

there is an intermediate step of finding some scalar metric to characterize a whole kernel in a useful way.

Such a metric could be the first value of each kernel—this has potential in estimating market sentiment,

but does not take into account the overall kernel shape. To combat this, one could take the sum of the

first few values of each kernel, but that too loses information. After multiple attempts, it was decided

in this study to extract the dominant frequency of each week’s kernel. This is done by identifying peaks

in amplitude from the Fourier transform and using the location (i.e. corresponding frequency) of the

greatest one.

In addition to the surplus of information, the erratic non-stationarity of the rawweek-by-week dom-

inant frequencies makes it difficult to interpret any meaningful features. To focus on long-term trends

without over-smoothing, the 8-week moving average was plotted in blue alongside the time series under

analysis in orange, to produce Figure 3.

12-hour kernels 3-hour kernels
NMSE EUR/USD GBP/USD CHF/USD EUR/USD GBP/USD CHF/USD
Mean 1.018 1.031 1.026 0.737 0.783 0.800

Median 0.991 0.998 1.005 0.386 0.395 0.392
Std. dev. 0.199 0.189 0.207 1.755 2.058 1.946

IQR 0.206 0.210 0.225 0.575 0.576 0.581
Skew 0.557 0.441 0.708 18.733 17.482 13.948

Table 1: NotableNMSE statistics—mean, median, standard deviation, interquartile range, and skewness.

5.2 Prediction Error

The normalizedmean-square error (NMSE), here defined as the sum of square errors divided by the vari-

ance of thedata (i.e. of the slopes), is tallied for each currencypair inTable 1, forwhich the columns labeled

“12-hour kernels” correspond to the kernels we have discussed so far, and those labeled “3-hour kernels”

refer to the much shorter and higher-frequency kernels that will be analyzed below. With respect to the

12-hour kernels, their average normalized errors are slightly greater than unit; hence the presentmodel is a
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Figure 3: Smoothed dominant kernel frequencies (blue) along with trading values of the currency pairs
(orange).

worse predictor than a horizontal line. This supports the hypothesis that the market is effectively Brow-

nian motion and extremely difficult to predict at the intraday scale; regardless, this high error does not

hamper the emergence of interesting large-scale patterns. Regardless, the purpose of this study is not to

directly predict through the outputs of the kernels but instead to analyze the longer-term non-stationary

dynamics of their shapes as a possible trend predictor.

Remarkably, decreasing both thememory and the outlook horizon to 3 hours each yields kernels with

significantly lower average NMSEs, but with extremely large outliers (as is witnessed by the enormous
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skewness of the NMSE in Table 1). This result can be explained by the occasional drastic reaction to an

exogenous event, in a market that is otherwise governed by gradual trends.
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Figure 4: Histogram along with kernel-density
estimates (KDEs) of the distributions of dom-
inant frequencies of trend-response kernels for
each week of all three currency pairs.
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Figure 5: Spectral density estimation of the
smoothed 12-hour trend-response dominant
frequency signal, obtained through the use of
Welch’s method.

6 Discussion

Themethod developed in this study is hypothesized to locally quantify the emotional climate surround-

ing a certainmarket. Though ametric on short-term performance, its slow evolutionary trends over long

periods of time appear especially insightful due to observed regularities. If it were feasible to determine

the instantaneous trend-response kernels in real time it would allow someone to predict the performance

of the underlying security and make enormous profits, and the fact that there are slow-moving trends is

encouraging. Even gaining some insight into the general shape of the kernel at any given point in time

has the potential to provide valuable information about the sentiment of the global community with re-

spect to the market. Highlighted below are a few key observations, mostly with regards to the dominant

trend-response frequencies as displayed in Figure 3.
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6.1 Periodicity

The dominant frequency signal from sequential EUR/USD trend-response kernels is especially periodic.

From 2015 to 2017, there are notable year-long cycles that seem to dip in the fall and peak in the spring

or early summer. Such seasonal effects are not so apparent in the raw currency time series. As will be

discussed in Section 6.3, it seems like these periodic cycles are tied to changes in the market itself. Fig-

ure 5 suggests that this almost-yearly periodicity is not unique to EUR/USD, but also manifests in the

GBP/USD and the CHF/USD time series as indicated by their spectral peaks at around 0.1month−1.

6.2 Distribution of Dominant Frequencies

By taking all the dominant frequencies of the trend-response kernels through the 63-month period, his-

tograms were compiled and plotted in Figure 4, which seems to indicate the presence of a trimodal distri-

bution of frequencies. This inkling was tested by computing kernel-density estimates (KDE) according

to Silverman’s rule [18], and checking if the modes are still visible as maxima; as shown in Figure 4, the

KDEs are clearly trimodal. One may conjecture that this property common to EUR/USD, GBP/USD,

and CHF/USD must be a trait of the United States dollar. Further investigation makes it difficult to be-

lieve that this is the case because the EUR/CHF, for instance, also exhibits the observed multimodality.

Figure 4 can be thought of as a pseudo-spectrum, as it shows the number of occurrences (i.e. relative

“intensities”) of weekly trend-response dominant frequencies. The three peaks in the figure correspond

to around 0.002 per min, 0.0075 per min, and 0.012 permin in that order, corresponding to 2.88 per day

(8.33-hour periods), 10.80 per day (2.22-hour periods), and 17.28 per day (1.39-hour periods). By far the

largest peak is the longer-term dominant frequency, making it the most valuable to predict because it is

both long-term and occurring frequently. Notice, also, how this pseudo-spectrum resembles a harmonic

spectrumwith fundamental frequency 0.003 permin andmultiples 0.006 permin and 0.012 permin. In

fact, the amplitudes of the peaks are approximately whole-number multiples as well, with the first being

double the second, which in turn is double the third. This result confirms the empirical wisdom that five

Laguerre functions are enough to capture up to three resonances.

The finding above is significant because it hints at the presence of three distinct trading behaviors,
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each categorizing potentially different market dynamics. Could these specific peak frequencies be inher-

ent to the Laguerre functions used? Potentially, but this is not a cause for concern because there are

still clear and insightful patterns that emerge from the temporal alternation between the three trading

behaviors.

6.3 Prediction Power

Looking back at Figure 3, it appears that a dip in the trend-response dominant frequency precedes a sig-

nificant fall in the actual currency price. In EUR/USD this is visible right before the start of the years 2015,

2016, and 2017, where dips in the blue line (that is, when it approaches 0.002permin) precede drops in the

currency by about two to threemonths. These observed regularities are not unique to EUR/USD: in the

middle of 2016, the GBP/USD currency pair also follows that pattern, as well as in the beginning of 2014.

CHF/USD is a little less clear in some time periods, but in the beginning of 2015 there are two dips that

adhere to our hypothesis and one more in early 2013. Both the blue and the orange lines are smoothed

by the same amount, and with windows that are smaller than the hypothesized predictive horizon (2

months); therefore, it is not just retrospective.

The aforementioned findings appear to suggest that a decrease in trader responsiveness, as marked by

a lowered dominant response frequency, tends to precede a drop in the market. There is no comparable

observation for the upside effect of an increase in trader responsiveness: this directional asymmetry with

respect to the market’s trend-response dynamics is indicative of human bias, namely risk aversion.

6.4 Trying Higher Frequencies

Heretofore, we have been looking at kernels with a 12-hour memory and a 12-hour outlook, generated

weekly. The multi-scale nature of this analysis begs for the inclusion of different time horizons, and of

shorter ones in particular. Hence kernels were generated with 3-hour memories and 3-hour outlooks,

employing 6-hour moving averages. The smaller scale of these kernels allowed the generation of a new

one every 3 hours, meaning that each day had about 8 kernels in sequence. It is clear from Figure 6 that

the dominant frequencies of the shorter kernels exhibit a similar trimodality as in Figure 4with the longer
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Figure 6: Histogram of the distributions
of dominant frequencies of 3-hour trend-
response kernels for all three currency pairs.
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Figure 7: Spectral density estimation of the
smoothed 3-hour trend-response dominant
frequency signal, obtained through the use of
Welch’s method.
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illustrating its multi-day periodicity.
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kernels. The new dominant-frequency signal is also periodic on the scale of a few days. With only a day-

long moving average (spanning 8 kernels), one obtains a signal with characteristics as seen in Figure 8.

The pronounced cycles have period length of about 2 to 3 days. Next, Figure 7 estimates the power of the

aforementioned signal in Figure 8 over the frequency domain. It is likewise clear that a large part of the
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signal lies in the frequency range of slightly less than 0.5 cycles per day: this periodicity range is distinct

from themulti-month horizon seen in Figure 3, and also from the daily cycles in volatility that are widely

recognizedwithin the financial community. Itwould beworth exploring how these newly observed cycles

translate into actionable information about market dynamics, e.g. what it means when the day happens

to be in a downward half-cycle versus in an upward one. For now, it is hypothesized that it informs us

about the traders’ reaction speed to sudden jumps or falls in the market.

6.5 Principal-Component Analysis

Principal-component analysis (PCA) involves the identification of “components” (i.e. vectors) that ex-

plain the highest amount of variation in a set of observations. The technique outputs a set of orthogonal

bases ordered by the variance of the data when projected onto each one. This new representation of the

basis functions allows us to scrutinize upon how the Laguerre functions are employed by our model to

approximate kernels. PCA proceeds as follows: first, we compute the (M ×M) covariance matrix of all

our kernels, whereM is the systemmemory, the length of each kernel vector. TheM eigenvectors of this

matrix are the new orthogonal bases, with each eigenvalue corresponding to that eigenvector’s relative

weight. Remarkably yet not surprisingly, there were exactly five “principal components” (i.e. eigenvec-

tors) with any significant contribution to the variance (as indicated by the eigenvalue). It is not surprising

because every kernel is a weighted sum of five orthogonal Laguerre functions. Figure 9 shows these five

ordered principal components derived from the 12-hour kernels and the 3-hour kernels, with the top row

of charts explaining the most variance and the bottom the least. An insightful result is the fact that the

principal components more-or-less are the same for EUR/USD, GBP/USD, and CHF/USD, as shown

by the blue, orange, and green curves respectively. Note also that the second, third, and fourth principal

components in Figure 9 have very similar shapes.

6.6 Influence of Other Time Series

The model can easily be extended to include a contribution of exogenous variables, paired with their

own kernels, to the predicted performance of a certain market. For instance, the trend-response kernels
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for EUR/USD can be supplemented with kernels that convolve on the recent past of GBP/USD and

CHF/USD,with the combination of all three giving a prediction for the future of EUR/USD.While that

particular example is not advisable because the three currency pairs are significantly collinear, resulting

in the same effects being distributed across three kernels and thus increasing the proportion of noise, a

newmodel could take into account the effects of indices on distinct sectors like oil prices, bond rates, and

the S&P 500 on a given currency pair like EUR/USD. The new kernels should theoretically isolate the

external market effects from the dynamics inherent to the currency, and give cleaner results.

7 Conclusion

In the present set of time series spanning the years 2012 to 2017, the dominant frequencies of the se-

quence of generated 12-hour kernels produce a possible forecasting signal. Whenever it dips to about

0.002min−1 ≈ 2.88 day−1, there is a remarkable likelihood that the underlying trading price will drop

within the next few (2 to 3) months. Furthermore, the noteworthy feature of the 3-hour kernels appears

to be the consistentmulti-day periodicity in their dominant frequency. Even though this system is highly

non-stationary, calculation of the kernels’ principal components indicates that certain dynamics are sta-

ble across the three currencies; this inference is further supported by the pronounced trimodality in the

dominant-frequency distributions of both the 12-hour and the 3-hour kernels.

The analysis described above is agnostic to any underlying market mechanics that could explain its

findings—this condition is analogous to the current state of the art in machine learning, wherein model

interpretability is not yet flushed out enough to match the empirical results. Nonetheless, due to a num-

ber of remarkable observations, there exists a significant basis for believing in the utility of dynamic trend-

response analysis of market data.

8 Further Study

To rigorously justify the effectiveness of the outlinedmethod, itwouldbehelpful to examinemore diverse

applications of it, as well as to feed it longer records of data. As highlighted above, there are many clear
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paths through which this model has potential for improvement and fruitful exploration.

An interesting experiment would be to separately generate kernels for a vast array of exogenous vari-

ables that correspond to differentmarket sectors, and rank each of these variables based on the consistency

of their kernels through time (a simple approach would be to normalize each kernel and then compute

the root mean-square error of the entire set). The exogenous variable with the most consistent kernels

would offer the greatest predictive utility.
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