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Efficient and Robust Polylinear Analysis
of Noisy Time Series

Myrl G. Marmarelis

Abstract—A method is proposed to generate an optimal fit of a
number of connected linear trend segments onto time-series data.
To be able to efficiently handle many lines, the method employs
a stochastic search procedure to determine optimal transition
point locations. Traditional methods use exhaustive grid searches,
which severely limit the scale of the problems for which they
can be utilized. The proposed approach is tried against time
series with severe noise to demonstrate its robustness, and then
it is applied to real medical data as an illustrative example. The
resulting identification of “pivot” points can find use in pattern
recognition for system control problems.

I. INTRODUCTION

When observing time-series data, it is often of great utility
to extract features that are of interest for a particular purpose.
Such features include the locations of transition points [1]-
[4]—points where there is a change in the perceived trend in
the evolution of the time series. With the algorithm presented
in this paper one is able to efficiently identify the most impor-
tant piecewise linear trends present in a time series, at different
resolutions. Previously proposed methods look for transition
points through exhaustive search procedures [5], which tend
to be time-consuming. In this paper, an approach termed
polylinear analysis is presented that makes use of a stochastic
search algorithm to efficiently obtain high-density piecewise-
linear least-squares fits while maintaining its robustness.

A. State of the Art: Segmented Linear Regression

In the medical community, the term segmented linear re-
gression encapsulates a plethora of different techniques. In
general, these techniques are concerned with fitting onto a time
series a continuous function composed of multiple linear trend
segments. The imposition of continuity makes this problem
significantly more difficult than similar problems without such
a constraint.

Many studies are concerned with fitting a model of which
both the locations and the number of so-called transition points
are known [3], [4]. Such studies would include those that aim
to observe the effects of an intervention in a system by looking
at the different trends in a variable during fixed intervals: pre-,
during, and post-intervention.

It is more common for the number of transition points (a.k.a
joinpoints) in a given data set to be unknown a priori. Many
people have devised statistical methods to estimate how many
should be placed [1], [2], [6]. The prevailing way to determine
the optimal locations of these transition points is through a grid
search [5]. It is simple to find an optimal fit once the locations
of the transition points are given.

B. Polylinear Analysis

The novelty of the proposed method lies in its use of
Simulated Annealing [7] to find the optimal transition points,
termed pivots. The rationale is based on the observation that
for most problems, a random search is much more efficient
than the exhaustive grid search or manual search, yet still
effective [8]. The choice of the number of pivots is informed
by certain characteristics of the data, and it can be tailored
to the objectives of each study. A grid search is much too
slow for large amounts of pivots; in the meanwhile, the
proposed algorithm can efficiently handle any number of
pivots. Henceforth the term “pivot” will be used to indicate a
transition point or the first or last point of the polylinear fit.
The term “line” will denote a linear trend segment between
two adjacent pivots.

II. METHOD

The problem is formulated as follows: given a time series
{vt}}_,, we want to retrospectively fit k connected line
segments onto it so that the cost function, the standard
square error, is minimized; the lines are defined through the
connecting pivot points {(x;,v;)}¥_,. The model is fit over
the entire data set, so we set xo = 1 and x; = n + 1. The
reason for choosing n + 1 instead of n is due to the definition
of the partial cost function in (2b) for the last line segment.

A. Derivations
Using the established notation we define the function rep-

resenting each trend segment:
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1) Pivot Height: Ultimately the goal is to minimize the
Sum of Squared Errors (SSE). The cost function is the sum
of all the trend segments’ SSEs:
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Now we can differentiate the error with respect to the height
of a specific pivot. This way we can find the optimal height
y; while keeping the locations and heights of its neighbors
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as well as its own location z; fixed. Notice only €; and €;4;
depend on y;;
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Setting (3) to zero lets us derive an expression for y; in terms
of its neighboring pivots and the data points captured by its
trend segments. The simplified formula is presented below:
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The special cases for the first and last pivots are trivial to
derive.

B. Simulated Annealing

While it is possible to derive a closed-form solution for
an optimal y;, such is not possible when looking for an
optimal x;. Instead, we need to search for the solution using an
optimization algorithm. I chose to use simulated annealing for
its relative speed and its ability to escape local minima [7].
A solution is defined by the locations of the k + 1 pivots.
The neighborhood of a solution is then all the possible pivot
sequences that have identical locations to those of the given
solution except for exactly one. Simulated annealing works
by walking through the neighborhoods while attempting to
reduce the cost function. Each step has a “temperature”
which determines both the potential size of the jump and the
probability at which the system will move to a less optimal
state than the current one. High temperatures are more volatile
and allow the system to make big jumps in the solution space,
even tolerating an increase in the cost function. By gradually
reducing the temperature we expect that the system reaches a
state that is close to the globally optimal solution.

The probability that a particular neighbor will be selected,
at a given temperature 7, is given by

G(z) = N(a| = JT, o = 7} )

where N denotes the probability density function of the
normal distribution and z is the horizontal distance jumped by

the displaced pivot point. The value of the standard deviation
o was chosen empirically. J is the maximum jump distance,
which is usually proportional to the average number of data
points per line. In other words, it is defined as 7 where 7 is
a constant usually less than 1.

The probability that a selected neighbor will be accepted as
the new current solution comes from the physical inspiration of
the algorithm and is thus given by the Boltzmann distribution:

P(de) = exp (AT&) (6)

where A denotes the strictness constant and d¢ is the change
in error caused by the transition to the new state. \ is adjusted
empirically until a desired acceptance rate is reached.

The temperature starts at 1 and follows a geometric sched-
ule; it is updated proportionally at each step:

T =aT (7N

where « is less than, but close to, 1. The temperature decreases
monotonically, so the algorithm runs until J7T' < 1 because
the x-values are integers and thus at this point the majority of
jumps would be rounded to zero. Once this stage is reached
the system is considered frozen and the best solution found so
far is returned.

The initial state of the system comprises equally-spaced (in
the horizontal axis) pivot points laid on the entire time series.
Each step in the simulated annealing process marks a transition
to a neighboring state (if it is accepted) and a reduction in the
temperature. When a new state is chosen, the vertical locations
of the displaced pivot point and those in its proximity need
to be adjusted accordingly before evaluating the cost function.
For this reason, once a neighboring solution has been selected,
the y-values of all the pivots are updated iteratively using the
closed-form solution (4) until the change in the error function
becomes negligible.

C. Choice of Parameters

Since a, in (7), controls the speed of the algorithm, small
changes in its value could greatly influence the results. A
faster run of the algorithm has increased reliance on the other
parameters, A in (6) and to a lesser extent «y in (5), to produce
quality fits. For noisy data it was found empirically that a near-
optimal choice of strictness value A should cause the system to
have an overall acceptance ratio of around 30% to 35%, though
longer runs tend to have lower acceptance rates for the same
A. Most of the results shown below were generated with an o
of 0.9997 (which corresponds to over 11000 generations) and
a v of 0.8.

To get consistent results, one may need to run multiple
simulations in parallel and then use the best result; otherwise,
one may end up with the result of a simulation that started off
in an “unlucky” fashion. A way to reduce the possibility of
falling upon sub-par fits is to increase the length of the run:
this causes it to spend more time in its initial volatile state,
which is needed to avoid getting stuck in local optima.
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Fig. 1. Polylinear fit on a simulated time series with a signal-to-noise ratio
(SNR) of 0 dB. Thick line is fit; thin line is original time series with (dotted)
and without (solid) noise.
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Fig. 2. Errors for polylinear fits of different resolutions (i.e. different numbers
of lines). Ten should be optimal because simulation started with ten lines.
Different lines correspond to simulations with different SNRs: thick is -10
dB; thin is 0 dB; dotted is 10 dB.

III. RESULTS
A. First, a Simulated Example
To demonstrate the effectiveness of the aforementioned
approach, a time series was constructed from ten trend seg-
ments plus noise. The signal-to-noise ratio (SNR) is defined
as follows:

®)
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Figure 1 shows the algorithm’s performance on a time series
with an SNR of 0 dB. The noise is white Gaussian noise.
As can be seen, the pivot points are approximated by the
algorithm. The exception lies on the shallow trend at around
the time 140-150 that is insignificant compared to its neighbors
in the noiseless version of the time series. The extra line that
the model failed to put in the right place is then used to pick
up some of the noise at around the time 350.

In Figure 2 one can see the effects of changing the number
of lines in the fit. To maintain a consistent acceptance rate,
the strictness parameter A needs to increase linearly or super-
linearly with respect to the number of lines; how much so
depends on the nature of the data. For this example a binomial
curve was derived with a constant plus a term with a fractional
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Fig. 3. Polylinear fits with half the number of lines (top) and double the
number of lines (bottom) as the original time series that is being fitted upon.
SNR is 0 dB; thick line is the fit and thin line is the simulated data, with
(dotted) and without (solid) the noise.

exponent in order to model this relationship. The -10 dB fit
had an exponent of 1, the O dB an exponent of 1.5, and the
10 dB an exponent of 2.

If the fit consists of less trend lines than are naturally present
in the data, then it tends to “merge” the adjacent trends that
are less distinguishable. Conversely, adding a higher number
of lines than the underlying trends in the data causes the
algorithm to overfit. These phenomena are evidenced in Figure
3. While fitting noise does reduce the overall error, it does
not reduce it by much for fits with reasonable SNR. In fact,
even before reaching ten lines, the impact on the error of
adding more lines to the fit diminishes rapidly for the 0 and
10 dB data (as shown in Figure 2). One possible explanation
is because some trend lines in the original simulation are not
significantly different from their neighbors. Figure 4 explores
the performance of the algorithm under different noise levels.
One can see that in the example with low noise the algorithm
has managed to pick up every pivot point. Polylinear analysis
is still a robust tool even under severe noise levels, though
the resolution may need to be reduced from the theoretical
optimum of the data in order to avoid fitting noise. In the
noisy example in Figure 4 one can still see that the lower-
resolution fit matches the overall trends of the simulated data.

B. An Illustrative Application to Real Data

The proposed algorithm was applied to real time-series data
beat-to-beat measurements of cerebral hemodynamics of three
healthy humans. The data consists of two distinct, noninvasive
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Fig. 4. Polylinear fits on simulations with different noise levels: SNRs of -10
dB (top) and 10 dB (bottom). The -10 dB fit has six lines instead of ten as
it is favorable to under-specify the resolution under the presence of extreme
noise. Thick line is the fit overlain on the simulated data with (dotted) and
without (solid) the noise.

measurements: of blood flow velocity at the left middle cere-
bral artery acquired via transcranial Doppler, and of arterial
blood pressure measured via photoplethysmography at the
index finger. The specifics of the data collection procedure and
pre-processing to get de-meaned and resampled data (at 0.25
Hz) are given by [9]. The data were provided by Dr. R. Zhang
(see Acknowledgment). In previous studies these two variables
are thought to interact through the cerebral auto-regulation
process [10], [11], where the pressure is seen as the input and
flow velocity as the output [9]. Henceforth the potential utility
of polylinear analysis will be explored in terms of precise
estimation of the latency between the two signals, which may
attain physiological (and potentially clinical) significance.

C. Choosing the Resolution of the Polylinear Fit

In order to amplify the features of the raw signal that are
of interest to this study, the peak frequency from the data
spectrum was found. The fit then would have two lines per
one period of that sinusoid. For the present data this meant an
initial line width of ten seconds, so the total number of lines in
one of the time series is k — o % points)(0 25 /ueron) Figure
5 shows two sample fits. With trad1t10na1 methods that employ
an exhaustive search mechanism to find pivots, it would be too
time-consuming to generate the aforementioned fits.
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Fig. 5. Polylinear fits on a flow velocity time series (top) and the correspond-
ing pressure time series (bottom). Thick line is fit and thin line is raw data,
mean-normalized.
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Fig. 6. Histogram of standard errors of 1000 fits on the O dB simulated data.

IV. DISCUSSION

A. Probability of Obtaining an Optimal Fit

One thousand ten-line polylinear fits with identical param-
eters were generated on the simulated time series with the 0
dB SNR. Figure 6 shows the approximate probability density
function of the SSE values of these fits.

Out of those 1000 fits, the best solution generated had an
error of 3.689. The probability of a particular fit’s SSE landing
in between 3.689 and 3.692 (roughly corresponding to the
peak of the leftmost bump) is about 55.7%; thus with six
simulations in parallel, there is an overwhelmingly high chance
of obtaining at least one fit within that range: 99.2%, to be
precise.
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The histogram in Figure 6 is bimodal probably due to
a rather convincing local minimum that some runs of the
algorithm fail to escape, with the leftmost bump corresponding
to the near-global minimum.

B. Polylinear vs. Fourier Analysis

In biometrics, data is usually cyclical but not periodic. Poly-
linear analysis does not assume periodicity and as such it may
be more appropriate than Fourier analysis in its application to
biomedical problems.

The Power Spectral Density (PSD) is obtained by taking
the Fourier transform of a function’s autocorrelation. The
autocorrelation of a time series V' is given by

n—r
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where A7 is a user-defined maximum time lag. This parameter
allows the resolution of the discrete Fourier tranform to be
adjusted. We generally want A7 to be short enough to avoid
the noise effects that are more pronounced for large lags.
In this case, the normalization in (9) does not have much
impact either. Figure 7 shows the PSDs of sample raw data
and of their corresponding polylinear fits. The main peak in
the lower frequencies is preserved but the higher frequency
one is discarded by the model, acting as a sort of low-pass
filter similar to Fourier-style filtering, but without biasing
the low-frequency content. This effect is valuable to the
present study since the higher frequencies correspond to other
processes such as breathing and hormonal regulation [12],
which contribute to latency estimation errors.

C. Cross-Correlations

The cross-correlation of two time series is defined as

(VixVo)(r) = > Va(t)Va(t+7),

t=1

Y

where V; and V5, are time series. The cross-correlation is
traditionally used to estimate the latency between two signals
by finding the time lag of the peak value.

To demonstrate the efficacy of polylinear analysis in com-
puting latency we first fabricate a scenario using the simulated
data: the time series was cross-correlated with a replica shifted
by 20 points (both embedded with independent -10 dB SNR
noise). We want to observe the resilience of this method under
extremely noisy conditions. Six lines (so with initial widths of
63.3) were fit on each of the time series and the result of this
cross-correlation was compared with what one would obtain
after applying a flat moving average of 59 points. The results
are plotted in Figure 8.

The result obtained from the polylinear fits has a peak closer
to the ground truth (just 1 point to the right) than that from the
smoothed noisy data (4 points to the left). Further smoothing
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Fig. 7. Power Spectral Densities of flow velocity time series (top) and pressure
time series (bottom). Thick line is of polylinear fit and thin line is of raw data.
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Fig. 8. Cross-correlations of simulated data that is time-shifted by 20 points,
on both of which enough pseudo-white noise is added to set the SNR to -
10 dB. Latency axis mimics the sampling rate of the real data: 4 points per
time unit. Thick line is of fits; thin line is of heavily smoothed noisy signals;
dashed line is of raw noisy signals.

makes the curve so flat that it becomes difficult to distinguish
the peak. Less smoothing shifts the peak more to the left;
therefore in this instance polylinear analysis yields a better
estimate of latency.

The cross-correlations of the polylinear fits can be used
to estimate the latency between changes in blood pressure
and blood flow velocity. Such is exemplified in Figure 9,
where the input-output (pressure-flow) cross-correlations are
shown for three subjects. The average (standard deviation)
values are -1.83 sec (0.76 sec) for polylinear analysis and
-0.75 sec (1.32 sec) for raw data. The estimates obtained
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Fig. 9. Cross-correlations of the flow velocity and pressure measurements
taken from the three subjects. Thick line is of fits and thin line is of raw
signals.

from cross-correlating the raw data have nearly twice the
standard deviation as those from the polylinear fits. Hence the
latencies can be obtained more clearly using the fits, since in
the raw cross-correlations there are multiple peaks in different
locations from those of the fits. The fits’ peaks in Figure 9
closest to the zero point have horizontal displacements of -2.5
sec, -2 sec, and -1 sec, from top to bottom respectively. These
findings agree with those of previous studies [12].

Polylinear analysis can prove useful for the estimation
of latency and therefore assist in the diagnosis of various
illnesses.

D. Scalability

Given a set of parameters for the simulated annealing, the
speed of this algorithm depends only on the number of data
points n: it scales as O(n) regardless of the number of lines k.

An exhaustive search, in contrast, scales as O(kfl). The fit
does not need to be perfect and thus we can use a stochastic
approach to quickly cover a large part of the search space [8].

E. Comparison to Low-Pass Filtering

Fourier analysis and its associated filtering methods can be
used to achieve similar results; however, such an approach
implicitly relies on the assumption that the low-frequency
content remains unaltered, which is not guaranteed in Fourier-
based low-pass filtering. On the other hand, polylinear analysis
does not affect the low-frequency content appreciably.

V. CONCLUSION

In this paper an efficient and robust method is proposed
for finding optimal least-squares fits of connected linear trend
segments in time series. It was demonstrated that the proposed
method maintains relatively accurate generation of results even
in the presence of severe noise, and that these fits can be
used reliably for determining the latency between two signals.
The stochastic approach to searching for pivots allows it to
greatly increase the number of fitted pivots with very little
performance penalty.
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