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Abstract

Observational studies often seek to infer the causal
effect of a treatment even though both the assigned
treatment and the outcome depend on other con-
founding variables. An effective strategy for deal-
ing with confounders is to estimate a propensity
model that corrects for the relationship between
covariates and assigned treatment. Unfortunately,
the confounding variables themselves are not al-
ways observed, in which case we can only bound
the propensity, and therefore bound the magnitude
of causal effects. In many important cases, like ad-
ministering a dose of some medicine, the possible
treatments belong to a continuum. Sensitivity mod-
els, which are required to tie the true propensity
to something that can be estimated, have been ex-
plored for binary treatments. We propose one for
continuous treatments. We develop a framework to
compute ignorance intervals on the partially iden-
tified dose-response curves, enabling us to quan-
tify the susceptibility of an inference to hidden
confounders. We show with simulations and three
real-world observational studies that our approach
can give non-trivial bounds on causal effects from
continuous treatments in the presence of hidden
confounders.

1 INTRODUCTION

The goal of machine learning is often to build a good predic-
tor. A separate task that is crucial to any scientific endeavor
is to identify the causal drivers. This entails recording as
many covariates as possible and adjusting for any confound-
ing before drawing conclusions. Sometimes an interven-
tional study is prohibitive due to cost or ethics, like forcing
someone to smoke. In those cases, one must rely on observa-
tional studies and remove confounding post hoc. A plethora

of methods operate on the basis of a learned propensity
model for the assigned treatment conditioned on covariates,
for instance to reweigh the sample and remove any visi-
ble biases. Quite frequently, the covariates are inadequate
to account for all the hidden paths between the treatment
and the outcome, and propensity-based approaches cannot
discern the real effect. Routine discoveries of dietary and
lifestyle confounders lead researchers to vascillate on the
health implications of e.g. coffee [Atroszko, 2019], alcohol
[Ystrom et al., 2022], and cheese [Godos et al., 2020].
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Figure 1. When a hidden confounder is distorting the as-
signed treatments in sub-populations, the overall population-
level trend may appear flipped in comparison to each sub-
population’s dose response. We deal with the cases where
the variables that separate the sub-populations are unob-
served. Refer to §D for details on the illustration.

We shall highlight the pitfalls of failing to accommodate pos-
sible confounders on estimated dose responses. The widely
noted J-shaped curves are common in physiology [Calabrese
and Baldwin, 2001]. Their characteristic dynamic occurs
wherever a substance in moderate concentration exhibits
vastly different effects than either extremes of high or low
doses. A simulated example in Figure 1 demonstrates how a
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J-shaped treatment effect can appear flipped in observational
data due to confounding. The phenomenon is an example of
Simpson’s paradox [Simpson, 1951, Yule, 1903].

1.1 RELATED WORKS.

There is growing interest in causal methodology for treat-
ments (or exposures, interventions) that take on specific
values within a continuum, especially in the fields of econo-
metrics [e.g. Huang et al., 2021, Tübbicke, 2022], health
sciences [Vegetabile et al., 2021], and machine learning
[Ghassami et al., 2021, Colangelo and Lee, 2021, Kallus
and Santacatterina, 2019]. So far, much scrutiny on partially
identified potential outcomes has focused on the case of
binary treatments, the simplest setting [e.g. Rosenbaum and
Rubin, 1983, Louizos et al., 2017, Lim et al., 2021]. A num-
ber of creative approaches were exhibited in the past few
years to make strides in this binary setting. Most of them
relied on a sensitivity model for bounding the extent of pos-
sible unobserved confounding, to which downstream tasks
may be adapted by noting which treatment effects degrade
the quickest.

Quite recently, attempts were made to handle unobserved
confounding with continuous treatments by optimizing the
treatment effect bounds with generative models [Padh et al.,
2022, Hu et al., 2021], rather than a sensitivity model. One
employs instrumental variables [Kilbertus et al., 2020]. An-
other, with a sensitivity model, was developed in parallel to
the present work [Jesson et al., 2022].

Regarding binary treatments, the so-called Marginal Sensi-
tivity Model (MSM) due to Tan [2006] continues to be stud-
ied extensively [Zhao et al., 2019, Veitch and Zaveri, 2020,
Yin et al., 2021]. Variations thereof include Rosenbaum’s
earlier sensitivity model [2002] that enjoys ties to regression
coefficients [Yadlowsky et al., 2020]. Other groups have
borrowed strategies from deep learning [Wu and Fukumizu,
2022] rather than opting for the MSM. Another active line of
work constructs bounds not due to ignorance on confound-
ing but instead viewed from the lens of robustness [Guo
et al., 2022, Makar et al., 2020, Johansson et al., 2020]. The
MSM is highly interpretable with its single free parameter,
and applicable to a wide swath of models.

Other approaches require a more complex data-generating
process than the simple observed outcome, treatment, co-
variates tuple (Y, T,X). For instance, proximal causal learn-
ing [Tchetgen et al., 2020, Mastouri et al., 2021] loosens
confounding requirements with additional proxy variables.
Chen et al. [2022] rely on multiple large dataset partitions.

1.2 CONTRIBUTIONS.

The MSM is incompatible with continuous treatments. Our
first contribution is to propose a unique sensitivity model

(§1.4) that extends the MSM to a treatment continuum. Next,
we derive general formulas (§2) and specialize them to ver-
satile closed forms (§2.2) culminating in Theorem 1. We
devise an efficient algorithm (§3) to compute ignorance
bounds over dose-response curves, following up with exper-
iments on simulated (§4) and real (§5) datasets.

1.3 POTENTIAL OUTCOMES.

Causal inference is often cast in the nomenclature of poten-
tial outcomes, due to Rubin [1974]. The broad goal is to
measure a treatment’s effect on an individual, marked by a
set of covariates, while accounting for all the confounding
between the covariates and the treatment variable. Effects
could manifest heterogenously across individuals. In non-
interventional settings, observed covariates may not entirely
overlap across treatment regimens. It is typical to estimate
two models, (1) the outcome predictor and (2) a model for
the propensity of treatment conditioned on the covariates.
The latter may help account for biases.

The first two assumptions involved in Rubin’s framework
are that observations of outcome, assigned treatment, and
covariates {Y (i), T (i), X(i)} are i.i.d draws from the same
population and that all treatments have a chance to occur for
each covariate vector: pT |X(t | x) > 0 (overlap/positivity)
for all t, x ∈ [0, 1]× X , specifically in our context of con-
tinuous treatments. The third and most challenging of these
fundamental assumptions is that of ignorability, or suffi-
ciency. Our study is concerned with the scenarios where that
assumption is violated: when there exists a dependency, not
blocked by the covariates, between the assigned treatment
and true potential outcomes. Let p(yt|x) denote the proba-
bility density function of potential outcome Yt = yt from a
treatment t ∈ [0, 1], given covariates X = x. Formally, we
have a violation of ignorability:

{(Yt)t∈T 6⊥⊥ T} | X.

It is only realistic to observe samples of Y |T = t,X = x
with density p(yt|t, x).However, to account for possible hid-
den confounding, we also require a p(yt|τ 6= t, x) for quan-
tifying treatment effects of the general form E[f(Yt)|X],
involving the density

p(yt|x) =

∫ 1

0

p(yt|τ, x)p(τ |x) dτ, (1)

where p(yt|τ, x) is the distribution of potential outcomes
conditioned on actual treatment T = τ ∈ [0, 1] that may
differ from the potential outcome’s index t. Throughout this
study, yt will indicate the value of the potential outcome at
treatment t, and to disambiguate with assigned treatment
τ will be used for events where T = τ . For instance, we
may care about the counterfactual of a smoker’s (τ = 1)
health outcome had they not smoked (yt=0), where T = 0



signifies no smoking and T = 1 is “full” smoking. We aim
to develop some intuition before introducing the novelties.
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Figure 2. A simplified setting with three potential outcomes
Y1, Y2, Y3 arising from treatment assignments T = 1, 2, 3.
Black arrows represent the ground-truth process. The red ar-
row shows what could happen when confounder Z is hidden
and covariate X is inadequate to block all links between T
and Y1,2,3 through Z, leading Z to “leak” into the estimated
treatment effect. The probability density p(yt|τ, x), found
in the integrand of Equation 1, diverges from p(yt|x) due to
this leakage.

On notation. We will use the shorthand p(· · · ) with low-
ercase variables whenever working with probability densi-
ties of the corresponding stochastic variables in uppercase.
In other words,

p(τ |x) means
d

dτ
P[T ≤ τ |X = x], and

p(yt|τ, x) means
d

du
P[Yt ≤ u|T = τ, X = x]

∣∣∣
u=yt.

Interpretation. How would one interpret p(yt|τ, x)? The
potential-outcomes vector (Yt)t∈[0,1] of infinite dimension-
ality is intrinsic to each individual with true confounder
Z, for which X is a noisy proxy. By “true” confounder
we refer to any set of variables that suffice to block all
backdoor paths between Yt and T . The potential-outcomes
vector would only change from knowledge of assigned treat-
ment T = τ if it betrayed additional information about
Z, absent in X , that further informed any Yt. We may ex-
press p(yt|τ, x) explicitly in terms of hypothetical true con-
founders as

∫
p(yt|z)p(z|τ, x) dz because z subsumes both

x and τ . This way, p(yt|z) is the true potential outcome and
p(z|τ, x) acts as a filter for how parts of the true confounder
mix together into the proxy x and the assigned treatment τ .

Propensities. The probability density p(τ |x) is termed
the nominal propensity. A quantity often examined is the
complete propensity, specifically referring to p(τ | yt, x) in
our realm. The complete propensity can differ from p(τ |x)

because of hidden confounders. In that instance, condition-
ing on potential outcome yt modulates the distribution. Sim-
ilarly, by connection through Bayes’ rule, conditioning the
potential outcomes p(yt|x) on assigned treatment τ modu-
lates those distributions. Absent any unobserved confound-
ing, p(yt|τ, x) = p(yt|x) and Equation 1 trivializes. See
Figure 2 for a graphical illustration on the runaway influ-
ence of τ on the potential outcomes.

Sensitivity. Explored by Kallus et al. [2019] and Jesson
et al. [2021] among many others, the Marginal Sensitiv-
ity Model (MSM) serves to bound the extent of (putative)
hidden confounding in the regime of binary treatments
T ′ ∈ {0, 1}. Specifically, it couples the odds of treatment
under the nominal propensity to the odds of treatment under
complete propensity, limiting the discrepancy:

Definition 1 (The Marginal Sensitivity Model). For binary
treatment t′ ∈ {0, 1} and violation factor Γ ≥ 1, the follow-
ing ratio is bounded:

Γ−1 ≤
[

p(t′|x)

1− p(t′|x)

]−1 [
p(t′| yt′ , x)

1− p(t′| yt′ , x)

]
≤ Γ.

Restricting ourselves to binary treatments affords us a num-
ber of conveniences. For instance, one probability value is
sufficient to describe the whole propensity landscape on a
set of conditions, p(1−t′| · · · ) = 1−p(t′| · · · ). As we trans-
fer to the separate context of t ∈ [0, 1], we must contend
with infinite treatments and infinite potential outcomes.

1.4 TOWARDS CONTINUOUS SENSITIVITY.

We require a constraint on the fundamentally unknowable
quantity p(τ | yt, x) for any treatment T = τ ∈ [0, 1] and
potential outcome yt, for possibly contrary treatment assign-
ments τ 6= t. As with the MSM, our target is to associate
p(τ | yt, x) to the knowable p(τ |x). In other words, we seek
to constrain the knowledge conferred on propensity by a sin-
gle potential outcome yt. It is not necessary for the functions
pertaining to (yt)t∈[0,1] to exhibit any degree of smoothness
in t. The potential-outcome variables are treated as entries
in an infinitely long vector. However, we do impose that
the propensity probability densities p(τ | . . . ) are at least
once differentiable in τ . What sort of analogue exists for the
notion of “odds” in the MSM?

Contrast treatment τ versus τ + δ locally, for some infinites-
imal δ, at any part of the curve. A translation of the MSM
might appear as [

p(τ + δ|x)

p(τ |x)

]−1 [
p(τ + δ| yt, x)

p(τ | yt, x)

]
.



Let us peer into one of those ratios. In logarithms,

δ−1 log
p(τ + δ|x)

p(τ |x)
=

log p(τ + δ|x)− log p(τ |x)

δ

−−−→
δ→0

∂ log p(τ |x)

∂τ
, ∂τ log p(τ |x).

Hence, we introduce the notion of an infinitesimal MSM
(δMSM), tying ∂τ log p(τ | yt, x) to ∂τ log p(τ |x).

Definition 2 (The Infinitesimal Marginal Sensitivity Model).
For treatments in the closed unit interval, t ∈ [0, 1], and
violation factor Γ ≥ 1, the following holds everywhere:∣∣∣∣∂τ log

p(τ | yt, x)

p(τ |x)

∣∣∣∣ ≤ log Γ.

We crafted the δMSM with the intention of functionally
mirroring the MSM—locally, on a treatment continuum.
Whereas Definition 2 is stated in logarithms, Definition 1 is
not; the difference is merely cosmetic and hyperparameter
Γ plays an equivalent role in both structures. Nevertheless,
the emergent properties are vastly different.

2 THE FRAMEWORK

We list the core assumptions surrounding our problem.

Assumption 1 (Bounded Hidden Confounding). Invoking
Definition 2, the violation of ignorability is constrained by
a δMSM with some Γ ≥ 1.

Assumption 2 (Observed Confounding at No Treatment).
The utter lack of treatment is not informed by potential
outcomes: p(τ = 0| yt, x) = p(τ = 0|x) for all t and yt.

Assumption 2 states that we look for sensitivity to hidden
confounders outside the control group at T = 0. The re-
striction is reasonable in situations like the following: we
seek to estimate the effect of a prescription drug, and some
clinics prescribe different dosages. Our T = 0 group would
be individuals who have not received any such prescription,
and T > 0 would place patients on a scale depending on pre-
scription dosage. We expect a dramatically lessened vulner-
ability to hidden confounders for the well-represented—in
observed and unobserved attributes—control group. From
a technical perspective, Assumption 2 is necessary for our
derivations, and should be interpreted as a blind spot in the
sensitivity model rather than a requirement for the underly-
ing process. There is no additional constraint, besides the
δMSM itself, on how much the complete propensity func-
tion may fluctuate around any T > 0. We motivate and
validate this assumption in the real world with §5.

Next, we proceed with derivations. The key to cracking
open Equation 1 is to carve out a region inside the domain of

integration where an approximation can be trusted. This will
extrapolate from the singular point τ = t where estimation
is feasible.

2.1 DEALING WITH AN UNRELIABLE
APPROXIMATION.

We expand p(yt|τ, x) around τ = t, where p(yt|t, x) =
p(y|t, x) is learnable from data. Suppose that p(yt|τ, x) is
twice differentiable almost everywhere in τ . Construct a
Taylor expansion

p(yt|τ, x) = p(yt|t, x) + (τ − t)∂τp(yt|τ, x)|τ=t

+
(τ − t)2

2
∂2
τp(yt|τ, x)|τ=t +O(τ − t)3. (2)

Denote with p̃(yt|τ, x) an approximation of first or sec-
ond order as laid out above. We will encounter that
even ∂τp(yt|τ, x)|τ=t is intractable. Thankfully, it can
be bounded using the δMSM machinery. Let us quantify
the reliability of this approximation by a set of weights
0 ≤ wt(τ) ≤ 1, where typically (but need not necessarily)
wt(t) = 1. Split Equation 1 along these weights by applying
the following identity, and then approximate the first part
only:

p(yt|x) =

∫ 1

0

wt(τ)p(yt|τ, x)p(τ |x) dτ

+

∫ 1

0

[1− wt(τ)]p(yt|τ, x)p(τ |x) dτ

≈
∫ 1

0

wt(τ)p̃(yt|τ, x)p(τ |x) dτ︸ ︷︷ ︸
(A) the approximated quantity

+

∫ 1

0

[1− wt(τ)]p(τ |yt, x)p(yt|x) dτ︸ ︷︷ ︸
(B) by Bayes’ rule

.

(3)

This separation into recoverable (A) and entirely unknown
(B), demarcated by the weights, ensures that the inaccurate
regimes of the approximation vanish (as wt(τ)→ 0 away
from t) and are replaced with the ignorant quantity. We
simplify part B of Equation 3 first:∫ 1

0

[1− wt(τ)]p(τ |yt, x)p(yt|x) dτ

= p(yt|x)

[
1−

∫ 1

0

wt(τ)p(τ |yt, x) dτ

]
.

We witness already that p(yt|x) shall take the form of

p(yt|x) ≈
∫ 1

0
wt(τ)p̃(yt|τ, x)p(τ |x) dτ∫ 1

0
wt(τ)p(τ |yt, x) dτ

. (4)

How the approximation error of Equation 2 carries into
Equation 4 is addressed by Proposition 2, for the cases con-
sidered in this study. To proceed further demands reflecting



on Assumptions 1 & 2. We will expand the denominator
first, and then repurpose the results for the derivatives of
Equation 2 that appear in the numerator. This part shows
how the assumed model serves to characterize the unknown
quantities, but the impatient reader may skip to §2.2. With-
out loss of generality, consider

∂τ log p(τ |yt, x) = ∂τ log p(τ |x) + γ(τ |yt, x),

|γ(τ |yt, x)| ≤ log Γ. (5)

We may attempt to integrate both sides;∫ t′

0

∂τ log p(τ |yt, x) dτ =

∫ t′

0

∂τ log p(τ |x) dτ

+

∫ t′

0

γ(τ |yt, x) dτ︸ ︷︷ ︸
,λ(t′|yt,x)

⇐⇒ log p(τ = t′|yt, x)− log p(τ = 0 |yt, x)

= log p(τ = t′|x)− log p(τ = 0 |x) + λ(t′|yt, x),

log p(τ |yt, x) = log p(τ |x) + λ(τ |yt, x)

(by Assumption 2).

∴ p(τ |yt, x) = p(τ |x)Λ(τ |yt, x), Λ , exp{λ}. (6)

Clearly |λ(τ |yt, x)| ≤ τ log Γ because it integrates γ,
bounded by ± log Γ, over a support with length τ . Subse-
quently Λ(τ |y, t) is bounded by Γ±τ . We are now equipped
with the requisite tools to properly bound p(yt|x)—or an
approximation thereof, erring on ignorance via reliability
weights wt(τ). The full derivation may be found in §A.

Predicting potential outcomes. The recovery of a fully
normalized probability density p̃(yt|x) via Equation 4 is
laid out below. It may be approximated with Monte Carlo or
solved in closed form with specific formulations for the
weights and propensity. Generally, it takes on the form
p̃(yt|x) = d(t|yt, x)−1p(yt|t, x), where

d(t|yt, x) , Eτ [Λ(τ |yt, x)]− (γΛ)(t|yt, x)Eτ [τ − t]

− 1

2
((γ̇ + γ2)Λ)(t|yt, x)Eτ [(τ − t)2], (7)

and said expectations, Eτ [·], are with respect to the implicit
distribution q(τ |t, x) ∝ wt(τ)p(τ |x). The notation γ̇ de-
notes a derivative in the first argument of γ(t|yt, x).

To make use of this formula, one first procures the set of
admissible d(t|yt, x) ∈ [d(t|yt, x), d(t|yt, x)] that violate
ignorability up to a factor Γ according to the δMSM. Then,
considering their reciprocals as importance weights [Tokdar
and Kass, 2010], tight bounds on the partially identified
expectations over p̃(yt|x) may be optimized.

A note on ensemble uncertainty. One should quantify
empirical uncertainties [Jesson et al., 2020] alongside sensi-
tivity to hidden confounding. In our experiments we learn
both the predictor and the propensity model as ensembles
from bootstrapped resampled [Lo, 1987] data. Then p̃(yt|x)
can also be resampled for confidence intervals via its com-
ponent ensembles.

2.2 TRACTABLE WEIGHT COMBINATIONS.

In addition to developing the general framework above, we
derive analytical forms for a specific paramametrization to
the weighting function and propensity distribution. Here,
we look to the Beta function and its associated probability
density for a natural solution. Suppose that

(T |X = x) ∼ Beta(α(x), β(x)),

for arbitrary α(x), β(x), (8)

wt(τ) =
τat−1(1− τ)bt−1

ct
=
τ rt(1− τ)r(1−t)

ct
,

at + bt = r + 2, r > 0. (9)

We designed the reliability weights to mirror the propen-
sity’s form by rescaling a Beta density. We assert that
wt(τ) peaks at τ = t, and that wt(τ) = 1. We find that
ct , trt(1− t)r(1−t), even though the solution is irrelevant
for our purposes. The mode is fixed:

at − 1

at + bt − 2
= t.

The remaining degree of freedom disappears by a precision
constraint at + bt − 2 = r for some r > 0. Constraining
a more complex dispersion statistic like variance is much
more difficult.

r = 4 r = 16 r = 64

Figure 3. Beta weight schemeswt(τ) in the unit square, plot-
ted for centers t = 0.125, 0.25, 0.5. Shapes are symmetrical
about t = 0.5. Trust declines with r.

The expectations found in Equation 7 are now available in
closed form, and can be bounded in terms of just two extra
free parameters, Γ and r. Guidance on setting the violation
factor Γ is discussed elsewhere, e.g. §5; as for the class
of weights, high r conveys poor trust in the Equation 2
approximation, as characterized by Proposition 2 below.

The findings. We pose a third and final assumption, which
enables us to state Theorem 1. The main insight to unlocking



those expectations is that each one of them involves an
integral with the productwt(τ)p(τ |x) over its normalization
constant, yielding the moments of a Beta distribution.

Assumption 3 (Second-order Simplification). The quantity
γ̇(τ |yt, x) cannot be characterized as-is. We grant that γ2

dominates over the former, and consequently∣∣(γ̇ + γ2)Λ
∣∣ ≤ ∣∣γ2Λ

∣∣+ ε, for small ε ≥ 0.

Theorem 1 (Beta Parametrizations). The formulations in
Equations 8 & 9 admit analytical solutions to the ignorance
denominator in Equation 7.

Eτ [Λ(τ |yt, x)] ∈
1F1(α(x) + at − 1; α(x) + β(x) + r; ± log Γ),

where again the operator Eτ is employed as in Equation 7,
and 1F1 denotes Kummer’s confluent hypergeometric func-
tion [Mathews Jr. et al., 2021]. In addition, with α, β im-
plicitly referring to α(x), β(x),

Eτ [τ − t] =
(1− t)α− tβ
α+ β + r

,

Eτ [(τ − t)2] =
[
(α+ β + r)(α+ β + r + 1)

]−1

·
[
(α2 + β2 + α+ β − r)t2

− (2α2 + 2αβ + 2α− r)t+ (α+ 1)α
]
.

To take these findings one step further, we compare any
weighting function wt(τ) to a baseline or phantom Beta
scheme with relatively low r.

Proposition 2 (Absolute Accuracy). Suppose that

1. ∂2
τp(yt|τ, x) is Q-Lipschitz, and that

2. the compound propensity-weights wt(τ)p(τ |x) and
wt(τ)p(τ |yt, x) are bounded on both sides by a phan-
tom Beta scheme, of the form in Equation 9 with nar-
rowness r?, up to a margin of c? ≥ 1.

More specifically by the second item,

w?t (τ)/c? ≤ {wt(τ)p(τ |x), wt(τ)p(τ |yt, x)} ≤ c?w?t (τ).

Then the outcome approximator p̃(yt|x) of second order
(Equation 7) has an absolute error stemming from the Taylor
remainder on p(yt|τ, x), stated in terms of these constants:

|p(yt|x)− p̃(yt|x)| ≤ (c?)2 (r? + 1) k(r?)Q.

The unitless k(r?), pertaining to the numerator in Equa-
tion 4, was solved numerically for certain values of r?;

r? 0.5 1 2 4

(r? + 1) k(r?) 0.03 0.02 0.01 0.005

Pertinent to the above result is the tendency for compound
propensity-weights wt(τ)p(τ |x) to be narrower than the
weights wt(τ) themselves. This holds especially in the Beta
family of propensities, per the discussion surrounding Equa-
tion 8. See §B for more details on the proposition.

3 COMPUTING THE IGNORANCE
INTERVALS

After deriving p̃(yt|x) in Equation 7 and a specific solution
with Theorem 1, we must find a way to bound the par-
tially identified expectations with respect to this distribution.
Concretely, we seek to characterize E[f(Yt)|X = x] for
any task-specific f(y). This is accomplished with a Monte
Carlo importance sampler of n realizations yi drawn from
proposal q(y):

Ẽ[f(Yt)|X = x] =

∑n
i=1 f(yi)p̃(yt = yi|x)/q(yi)∑n

i=1 p̃(yt = yi|x)/q(yi)
.

(10)
Even though p̃(yt|x) is a normalized probability density, it
contains partially identified quantities. It is untenable to con-
strain a search along the candidate values for each d(t|yt =
yi, x) to even approximately ensure

∫
Y p̃(yt = y|x) dy = 1.

For this reason the bias of an estimator without the corrective
denominator of Equation 10 would be uncontrollable [Tok-
dar and Kass, 2010]. A greedy algorithm may be deployed
to maximize Ẽ[f(Yt)|X = x] in this form by using weights

wi :=
p(yi|t, x)

d(t|yi, x)q(yi)
, wi :=

p(yi|t, x)

d(t|yi, x)q(yi)
.

The minimum may be achieved by a trivial extension. Max-
imizing and minimizing Ẽ[f(Yt)|X = x] with respect to
the bounding quantities (γ,Λ) enables the resolution of
ignorance bounds on the basis of Γ from Definition 2.

Our algorithm, displayed below, adapts the method of Jesson
et al. [2021] to heterogeneous weight bounds [wi, wi] per
draw i. View a proof of correctness in §C.

4 A SYNTHETIC EXPERIMENT

We first studied an idealized scenario with one hidden con-
founder and no covariate shift. In our design we sought
to induce a complicated enough dose-response function in
(T,X), and a true propensity T |Z that deliberately obeys
Assumption 2. We constructed a piecewise uniform distribu-
tion for T |Z with variable categorical probabilities assigned
to each “bucket,” always residing in the probability simplex.
The coefficients (see §E) were concocted prior to experimen-
tation. For covariates, true confounder z1 passed through
entirely and z2 remained hidden.

Crucially, we placed an intentional relationship between the
single covariate X ∈ [0, 1] and the amout of unobserved



input :{(wi, wi, fi)}ni=1 ordered by ascending fi.
output :maxw E[f(X)] estimated by importance

sampling with n draws.

Initialize wi ← wi for all i = 1, 2, . . . n;
for j = 1, 2, . . . n do

Compute ∆j ,
∑n
i=1 wi(fj − fi);

if ∆j < 0 then
wj ← wj ;

else
break;

end
end
Return

∑
i wifi/

∑
i wi;

Algorithm 1: The expectation maximizer, with O(n)
runtime if intermediate ∆j results are memoized.

confounding. The model suffered more near X = 0 than
X = 1. We challenged our δMSM to discern this and grow
the ignorance intervals more for lower X , as it should have
been informed by the propensity estimates. And it was. We
pinpoint this differential growth in Figure 4.

4.1 A GROUNDED IGNORANCE MEASURE.

In reality, an unconfounded ground truth—like the black
line in Figure 4—would stay unobserved. This instance,
however, lends us special tools for model evaluation. Uncer-
tainty of an ignorance interval [y, y] with respect to a true
Bernoulli(y?) outcome was measured in an information-
theoretic way. We calculated for every (t, x) the expres-
sion

∫ y
y

KLB(y?‖y) dy, where KLB is shorthand for the
Kullback-Leibler divergence between two Bernoulli vari-
ables with the given probabilities, true y? and inferred y.
This way, we grounded the ignorance intervals on their av-
erage approximation cost.

5 RESULTS FROM AN
OBSERVATIONAL STUDY

The most pertinent application for the framework laid out
above is an observational study with incomplete or noisy
covariates and a continuous treatment variable. More con-
cretely, the treatment variable should be transformed and
scaled into the unit interval such that T = 0 signifies a
control with a complete lack of treatment. Every kind of in-
dividual should be about equally likely to fall in the (T = 0)
cohort (Assumption 2.) As for shaping the (T > 0) regime,
the domain should inform whether a linear scale is em-
ployed, versus an empirical or parametric (i.e. standard nor-
mal) cumulative density function.

The data. We conducted multiple experiments based on
observational studies, showcased in Table 1. Refer to §F
for particulars on the dataset construction, model design,
and test/train learning curves. A quarter of the data were
reserved randomly for the test sets.

Dataset dim X dim Xc Sample Outcome

Vitamin 14 3 253 Bernoulli
Energy 14 5 5,158 Gamma
Brain (1–4) 100 ( 73, 58, 14,551 Gamma

86, 93 )

Table 1. Exposition of the datasets constructed for our ex-
periments. Columns display the dimensionality of the full
covariate vectors X , the censored versions, sample sizes,
and outcome parametrizations. For Brain, the outcome is 74
variables; the rest are univariate.

The estimators. In both experiments, the predictor and
ensemble were trained as ensembles of artificial neural net-
works with two inner residual layers. We chose the “swish”
activation function for its well-behaved gradients [Ra-
machandran et al., 2017]. The flagship ADAM optimizer
was employed for stochastic gradient descent with a learning
rate of 10−3 and no mini-batching. Our analysis involved
bootstrapping the ensemble to garner empirical uncertainties.
Outcomes were modeled as in the last column of Table 1.

Test-set log-likelihoods do not degrade much between the
full and censored datasets. One cannot look to predictive
performance for how well the fully unconfounded dose-
response curves are captured, since any hidden confound-
ing would persist. Synthetic ground-truth potential out-
comes always carry the risk of presenting an unrealistic
scenario [Curth et al., 2021].

The objective. We chose to investigate the coverage of
E[Yt] from ignorance intervals on censored covariates. The
notion of coverage [McCandless et al., 2007] is vital for
downstream decision-making. The larger dataset Brain af-
forded us the ability to approximate a pseudo-population
X̃ by reweighing X such that X̃ ⊥⊥ T , in a manner akin to
inverse propensity weighting [Reiffel, 2020]. This allowed
us to scrutinize the less overlapping parts of the population.
We took an unweighted expectation for Vitamin and Energy.

Our test relies on approximating an unconfounded model
by collecting a large set of covariates, and then learning
another model on a heavily censored version. Our reason-
ing is that the censored model would suffer from a greater
degree of hidden confounding. The censored model could
then be assessed along all potential-outcome predictions,
by pretending that the full model represented the real dose-
response curves. A pertinent metric would be how much a
sensitivity model with Γ ≥ 1 swallows the “real” dose re-
sponses, as a trade-off against the sheer area of the ignorance
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Figure 4. Greater extent of hidden confounding at the lower X = 0.09 translates to wider ignorance intervals than at the
higher X = 0.91. Left: graded ignorance intervals at Γ := 1, then Γ := 2.125, Γ := 3.25, with r = 128 and 95% ensemble
uncertainty. The black line is the actual E[Yt|X], from integrating the ground truth over the hidden p(z2). Bernoulli
expectations are plotted in a logit transformation because the significance of a perturbation is proportional to y(1− y).
Right: the selective growth of ignorance intervals across X , computed using the divergence measure described in §4.1.

intervals. These competing quantities can be viewed as a
form of recall and (the opposite of) precision, respectively.

Denote (yc, yc) the partially identified bounds of the cen-
sored model and (y, y) the full model’s 95% confidence
interval for Ẽ[Yt], from percentile bootstrapping. The partial
identification was bootstrapped as well. For some Γ := s
and a t ∈ [0, 1] grid, of length 17 in our case, ignorance is∑
t[yc(s, t) − yc(s, t)]/

∑
t[y(t) − y(t)], and recall is the

normalized intersection between the bounds:∑
t max{0,min{yc(s, t), y(t)} −max{yc(s, t), y(t)}}∑

t[y(t)− y(t)]
.

The comparisons. We compared our δMSM with r = 32
throughout (solid in the figures on this page) to other sen-
sitivity models: namely, (dotted) an analogue developed
independently and in parallel to the present work, with just
one free parameter [Jesson et al., 2022]; (dashed) the prod-
uct of shoehorning a continuous model into the binary MSM
by triggering a binary treatment at T > 0.5 and discretizing
the propensity at the threshold; and (dot/dash) a baseline
sensitivity model that emerges from Γ-scaling the Algo-
rithm 1 weights without any propensity.

6 DISCUSSION

The utility of our framework is evident in the above show-
cased results. We demonstrated that, in the presence of a
solid ground truth (§4), the procedure discriminates between
more and less confounded outcomes by selectively growing
the ignorance bounds (Figure 4).
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Figure 5. Fraction of the full model’s response captured
by the censored model (vert.), judged in terms of bounds
overlap, versus the relative area of the partial identification
(horiz.). The response grid was partitioned into equal halves.
Ignorance window was selected to cover the range of recall.
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Figure 6. Ignorance (up to 2.25) versus recall, as in Figure 5,
but for Brain. Four disjoint sections of the covariates were
censored for the different panels. Curves begin at Γ := 1.

With the real datasets (§5), we analyzed how the censored
model recovered the full model’s continuum of potential
outcomes. The novel δMSM consistently outperformed the
other contenders for the Brain dataset, in Figure 6. We no-
ticed via Figure 5 that the δMSM’s behavior is markedly
different from the alternatives, with clear improvement in
the latter half of the response for Vitamin and for small ig-
norances in Energy. These findings suggest higher coverage
efficiency for the δMSM in some realistic scenarios.

Ethical implications. Sensitivity models for hidden con-
founders can help to guard against erroneous conclusions
from observational studies. We generalized this line of anal-
ysis to the regime of continuous treatments, thereby increas-
ing its practical applicability. However, there is no replace-
ment for an actual interventional study, and researchers
must be careful to maintain a healthy degree of skepticism
towards observational results even after properly calibrating
the partially identified effects.

Future work. Our scope solely considered the univariate
distributions p(yt|x) for each potential outcome. As such, it
was only necessary to grapple with the complete propensity
of first order, p(τ | yt, x). In theory there could exist more
exhaustive “complete” propensities such as p(τ | yt1 , yt2 , x)
that we term of second order. These high-order propensi-
ties only become relevant alongside joint distributions, like
p(yt1 , yt2 |x). It may be fruitful to study these.

7 CONCLUSION

We successfully bridged a hidden-confounding sensitivity
model to continuous treatments. Our extension is parsimo-
nious in that it imposes minimal additional requirements on
the data and the predictor model. Not only did we derive
the analytical forms needed to work with Beta-parametrized

propensities, but we also provided the ingredients for a more
general sampling-based approach. We carried these findings
into a complete pipeline for quantifying ignorance inter-
vals on dose-response curves. Namely, we bounded the ap-
proximation error in Proposition 2 and detailed an efficient
optimization algorithm. Our observational experimentation
validated the method’s core assumptions.
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A ADDITIONAL DERIVATIONS

Consider Equation 3.A:∫ 1

0

wt(τ)p̃(yt|τ, x)p(τ |x) dτ = p(yt|t, x)

∫ 1

0

wt(τ)p(τ |x) dτ︸ ︷︷ ︸
(A.0)

+ g1(yt|t, x)

∫ 1

0

wt(τ)(τ − t)p(τ |x) dτ︸ ︷︷ ︸
(A.1)

+ g2(yt|t, x)

∫ 1

0

wt(τ)
(τ − t)2

2
p(τ |x) dτ︸ ︷︷ ︸

(A.2)

,

where gk(yt|t, x) , ∂kτ p(yt|τ, x)|τ=t. (11)

Lightening the notation with a shorthand for the weighted expectations, 〈·〉τ ,
∫ 1

0
wt(τ)(·)p(τ |x) dτ, it becomes apparent

that we must grapple with the pseudo-moments 〈1〉τ , 〈τ − t〉τ , and 〈(τ − t)2〉τ . Note that t should not be mistaken for a
“mean” value.

Furthermore, we have yet to fully characterize gk(yt|t, x). Observe that

p(yt|τ, x) =
p(τ |yt, x)p(yt|x)

p(τ |x)
⇐⇒ ∂τp(yt|τ, x) = p(yt|x) · ∂

∂τ

p(τ |yt, x)

p(τ |x)
.

The p(yt|x) will be moved to the other side of the equation as needed; by Equation 6,

∂

∂τ

p(τ |yt, x)

p(τ |x)
=

∂

∂τ
Λ(τ |yt, x).

Expanding,

=
∂

∂τ
exp

{∫ τ

0

γ(τ |yt, x) dτ

}
= γ(τ |yt, x) exp

{∫ τ

0

γ(τ |yt, x) dτ

}
= (γΛ)(τ |yt, x).

Appropriate bounds will be calculated for g2(yt|t, x) next, utilizing the finding above as their main ingredient. Let

g̃k(yt|t, x) , p(yt|x)−1gk(yt|t, x) =

(
∂

∂τ

)k
p(τ |yt, x)

p(τ |x)

∣∣∣∣∣
τ=t.

The second derivative may be calculated in terms of the ignorance quantities γ,Λ:

g̃2(yt|t, x) =∂τγ(τ |yt, x)Λ(τ |yt, x)

=γ(τ |yt, x)2Λ(τ |yt, x) + γ̇(τ |yt, x)Λ(τ |yt, x)

=(γ2 + γ̇)Λ(τ |yt, x).

And finally we address p̃(yt|x). Carrying over the components of Equation 11 into Equation 3,

p̃(yt|x) =
p(yt|t, x)〈1〉τ

〈Λ(τ |yt, x)〉τ − g̃1(yt|t, x)〈τ − t〉τ − g̃2(yt|t, x)〈(τ − t)2〉τ

=
p(yt|t, x)

Eτ [Λ(τ |yt, x)]− (γΛ)(t|yt, x)Eτ [τ − t]− 1
2 ((γ̇ + γ2)Λ)(t|yt, x)Eτ [(τ − t)2]

,

(12)

where these expectations Eτ [·] are with respect to the implicit distribution q(τ |t, x) ∝ wt(τ)p(τ |x). The first term in the
denominator, Eτ [Λ(τ |yt, x)], may be approximately bounded by the same Algorithm 1.



B DETAILS ON PROPOSITION 2

The numerics were accomplished via Wolfram Mathematica 12. Our steps for calculating key quantities are listed below.

Firstly, since the second derivative employed in the Taylor expansion is Q-Lipschitz, we have
∣∣∂3
τp(yt|τ, x)

∣∣ ≤ Q. Let us
denote the Taylor remainder in this scope as ρ(yt|τ, x). By Taylor’s theorem,

|ρ(yt|τ, x)| ≤ |τ − t|
3

6
Q.

We carry over the remainder into the formulation of p̃(yt|x) as in Equation 4, reproduced more explicitly below.

p̃(yt|x) =

∫ 1

0
wt(τ)

[
p(yt|τ, x) + ρ(yt|τ, x)

]
p(τ |x) dτ∫ 1

0
wt(τ)p(τ |yt, x) dτ

By acknowledging that an exact approximation requires ρ(yt|τ, x) = 0, we express the absolute error in our imperfect
approximator as

|p̃(yt|x)− p(yt|x)| =

∣∣∣∣∣
∫ 1

0
wt(τ)ρ(yt|τ, x)p(τ |x) dτ∫ 1

0
wt(τ)p(τ |yt, x) dτ

∣∣∣∣∣ ≤
∣∣∣∫ 1

0
c?w?t (τ)ρ(yt|τ, x) dτ

∣∣∣∫ 1

0
wt(τ)p(τ |yt, x) dτ

.

We analytically solved the definite integral
∫ 1

0
c?w?t (τ) 1

6Q|τ − t|
3

dτ ≥
∣∣∣∫ 1

0
c?w?t (τ)ρ(yt|τ, x) dτ

∣∣∣, bounding the numer-
ator. We omitted the full expansion for brevity. Then, for specific values of r? as displayed in the table of the theorem
statement, we maximized the quantity numerically over the support 0 ≤ t ≤ 1 in order to obtain k(r?).

Next, on reducing the denominator, we employed the opposite side of our bound:∫ 1

0

wt(τ)p(τ |yt, x) dτ ≥ 1

c?

∫ 1

0

w?t (τ) dτ =
B(tr? + 1, (1− t)r? + 1)

c? ttr?(1− t)(1−t)r? .

The resultant fraction is symmetric about t = 1
2 . We posit—for it was too unweildy to prove—that the expression is concave

in t ∈ [0, 1] for all r? > 0. We validated this claim by testing the non-positivity of the second derivative at relevant values of
r? across the domain in t. It follows that the fraction achieves its minimum at the boundaries t = 0, 1. In either of those
cases it may be evaluated by means of the identity B(r? + 1, 1) = (r? + 1)−1. Hence, we assert that the above fraction is
no lesser than [c?(r? + 1)]−1.

Regardless of the validity of the above conjecture, the quantities displayed in the table of Proposition 2 are correct because
the relation surely holds at those points in r?.



C CORRECTNESS OF ALGORITHM 1

The algorithm functions by incrementally reallocating mass (relative, in the weights) to the righthand side, from a cursor
beginning on the lefthand side of the “tape”.

Proof. Firstly we characterize the indicator quantity ∆j . Differentiate the quantity to be maximized with respect to wj ;

∂

∂wj

∑
i wifi∑
i wi

=
fj∑
i wi
−
∑
i wifi

(
∑
i wi)

2

=
fj
∑
i wi −

∑
i wifi

(
∑
i wi)

2

∝
∑
i

wi(fj − fi)︸ ︷︷ ︸
,∆j

up to some positive factor.

Hence, ∆j captures the sign of the derivative.

We shall proceed with induction. Begin with the first iteration, j = 1. No weights have been altered since initialization yet.
Therefore we have

∆1 =
∑
i

wi(f1 − fi).

Since ∀i, f1 ≤ fi due to the prior sorting, ∆1 is either negative or zero. If zero, trivially terminate the procedure as all
function values are identical.

Now assume that by the time the algorithm reaches some j > 1, all wk = wk for 1 ≤ k < j. In other words,

∆j =
∑
i<j

wi (fj − fi)︸ ︷︷ ︸
(+)

+
∑
i>j

wi (fj − fi)︸ ︷︷ ︸
(−)

.

Per the algorithm, we would flip the weight wj ← wj only if ∆j < 0. In that case,∑
i<j

wi(fj − fi) <
∑
i>j

wi(fi − fj), where both sides are non-negative.

Notice that the above is not affected by the current value of wj . This update can only increase the current estimate because
the derivative remains negative and the weight at j is non-increasing. We must verify that the derivatives for the previous
weights, indexed at k < j, remain negative. Otherwise, the procedure would need to backtrack to possibly flip some weights
back up.

More generally, with every decision for weight assignment, we seek to ensure that the condition detailed above is not violated
for any weights that have been finalized. That includes the weights before j, and those after j at the point of termination.
Returning from this digression, at k < j after updating wj ,

∆k =
∑
i≤j

wi(fk − fi) +
∑
i>j

wi(fk − fi).

To glean the sign of this, we refer to a quantity that we know.∑
i<j

wi(fj − fi) <
∑
i>j

wi(fi − fj)

⇐⇒
∑
i≤j

wi(fk − fi) <
∑
i>j

wi(fi − fj) +
∑
i≤j

wi(fk − fj)

⇐⇒
∑
i≤j

wi(fk − fi) +
∑
i>j

wi(fk − fi)︸ ︷︷ ︸
∆k

<
∑
i>j

wi(fk − fj) +
∑
i≤j

wi(fk − fj)︸ ︷︷ ︸
negative.

The remaining fact to be demonstrated is that upon termination, when ∆j ≥ 0, no other pseudo-derivatives ∆j′ , j
′ > j are

negative. This must be the case simply because fj′ ≥ fj .



D ON THE INTRODUCTORY
ILLUSTRATION

The setting in Figure 1 lacks covariates. Its conditional ex-
pected outcome E[Y |Z=z, T = t] is defined as 3(t− 1

4 )2−
4z2. To produce the dashed line, observations are fully con-
founded by the treatment regime pT |Z(t | z) = δ(t−z). The
amalgamation of individual curves leads to a population-
level average pointing in the wrong direction. Here, the
overlap assumption for inverse propensity weighting is vio-
lated here. Still, “true” potential outcomes are revealed by
forcing independence between T and Z.

The solid line is the result of taking an expectation over
Z ∼ Uniform[0, 1]. The blue dots represent observations
from a more realistic, partially confounded scenario where
(T | Z = z) ∼ Beta(48z+1, 48(1−z)+1), i.e. treatments
are centered at z with a narrow spread.

E SYNTHETIC SCENARIO DETAILS

Setup. 1,500 training and 500 testing examples were gen-
erated. We trained ensembles of eight neural networks with
two hidden layers of 16 units, for the Bernoulli predictor and
Beta propensity each. On constructing the idealized world,

Z = (Z1, Z2) ∼ i.i.d Unif(0, 1)

(T |Z = z) ∼



U(0, 0.2) w.p 0.1

U(0.2, 0.5) w.p 0.4− 0.2z2

U(0.5, 0.7) w.p 0.3 + 0.3z2

U(0.7, 0.8) w.p 0.1− 0.1z2

U(0.8, 1) w.p 0.1

(X|Z = z) ∼ Dirac(z1)

(Y |T = t, Z = z) ∼ Bernoulli(z1−z2
1 tz2)

(13)

F EXPERIMENTAL DETAILS

Brain dataset. Data from the UK Biobank were accessed
under application 11559. From the brain Magnetic Reso-
nance Imaging (MRI) data we extracted the 74 fields cor-
responding to parcelized cortical volumes on the left and
the right hemispheres each [Miller et al., 2016]. Then we
summed each left/right pair to arrive at 74 positively valued
outcomes. Six groups of semantically related fields com-
posed the long covariate vector:

• 6 basic details: age, weight, sex, standing height, seated
height, and month of birth.

• 3 reported activity measurements: weekly minutes
spent walking, engaged in moderate activity, and vig-
orous activity.

• 27 environmental variables surveying the pollution and
greenery surrounding the person’s life.

• 42 blood measurements from cell counts to calcium
concentration.

• 15 cardiac measurements including ECG and PWA
modalities.

• 8 welfare indices for English citizens assessing the
following: deprivation, income, employment, health,
education, housing, crime, and living environment.

Listwise deletion was employed to handle any missing value.
To censor the covariates, the four largest sectors (italicized)
encompassing various confounding variables were omitted,
one at a time. The treatment variable was the walking field
taken from the triad of activity measurements, scaled to the
unit interval such that any recording of at least two hours per
day was set to T = 0 and any lesser amount had T increase
up to 1 according to an empirical CDF.

Brain estimators. Both the predictor and the propensity
model, censored and uncensored, were trained in ensem-
bles of 32 artificial neural networks with four inner residual
layers of 32 activation units each. A dropout of 0.05 was
imposed on these layers. Additionally, an L2-regularization
on the inner layers with weight 10−3 was applied. All pre-
dictors were trained for 10,000 epochs and propensities
for 5,000 epochs. The outcome predictor parametrized a
Gamma distribution, and the propensity model parametrized
a Beta distribution. See Figure 7.

Vitamin dataset. We studied individuals from a recently
published record of COVID-19 mortality from Israel, with a
focus on pre-infection Vitamin D levels. The data acquired
from Dror et al. [2022] included 253 individuals, with 38
deaths attributed to COVID-19. The full set of recorded
covariates were gender (two categories,) age (three levels,)
body-mass index (two levels,) religion (five categories,)
and six binary-labeled comorbidities. Vitamin D levels, the
treatment variable, were scaled to the unit interval such
that “healthy” levels of at least 40 ng/mL were allocated
to T = 0 and T increased to 1 linearly as vitamin levels
tended to zero. The censored dataset omitted the religion
and comorbidity categories.

Vitamin estimators. The singular inner predictor- and
propensity-model layers comprised four activation units
each, owing to the smaller set of covariates. The dropout
was increased to 0.1. The smaller models were trained in
ensembles of 64 in this case.

Energy dataset. Hourly time series of electricity gener-
ation in Spain were gathered for the period from April 1st,
2021 to November 1st, 2021 [ENTSO-E]. The outcome
was the wholesale price of electricity. The market price of



natural gas spiked in Europe during that time frame, espe-
cially within the testing set that was temporally ordered
after the training set—not randomly assigned. Hence, we
observed substantial non-stationarity between the model
estimates and the out-of-sample covariates used in the ig-
norance/recall evaluation. The treatment variable was the
carbon price dictated by the EU Emissions Trading System
(ETS), linearly scaled between 0 and 1.

Energy estimators. The predictor models, censored and
uncensored, each had one inner layer of eight activation
units. The propensity models had four inner units instead.
The dropout was increased to 0.2 here, and the models were
trained in ensembles of 16.
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Figure 7. Blue: censored-model likelihood in the train set;
red: censored-model likelihood in the test set; and green:
full-model likelihood in the test set.

G SOURCE-CODE AVAILABILITY

Please visit https://github.com/marmarelis/
TreatmentCurves.jl.

https://github.com/marmarelis/TreatmentCurves.jl
https://github.com/marmarelis/TreatmentCurves.jl
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